

Absolute Maximum Ratings(Note 1)

(Note 2)
Supply Voltage (V_{CC})
-0.5 to +15 V
-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
Power Dissipation (P_{D})
(Note 3)
600 mW
S.O. Package only

Lead Temperature (T_{L})
(Soldering 10 seconds)
500 mW
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	12	V
DC Input or Output Voltage			
$\quad\left(\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}\right)$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	-40	+85	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Times			
$\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right) \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1000	ns	
$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		500	ns
$\mathrm{~V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	400	ns	

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating - plastic " N " package: $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$		Units
				Typ		Guaranteed L	imits	
V_{IH}	Minimum HIGH Level Input Voltage		$\begin{gathered} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 5.3 \\ 8.4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage		$\begin{gathered} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 0.5 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
R_{ON}	Maximum "ON" Resistance (Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \end{aligned}$ (Figure 1)	$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \\ & 12.0 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 30 \end{gathered}$	$\begin{aligned} & 170 \\ & 85 \\ & 70 \end{aligned}$	$\begin{gathered} 200 \\ 105 \\ 85 \end{gathered}$	$\begin{aligned} & 220 \\ & 110 \\ & 90 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ (Figure 1)	$\begin{gathered} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 120 \\ 50 \\ 35 \\ 20 \end{gathered}$	$\begin{gathered} 180 \\ 80 \\ 60 \\ 40 \end{gathered}$	$\begin{gathered} 215 \\ 100 \\ 75 \\ 60 \end{gathered}$	$\begin{gathered} 240 \\ 120 \\ 80 \\ 70 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
R_{ON}	Maximum "ON" Resistance Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \end{aligned}$	$\begin{gathered} \hline 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 10 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
I_{IN}	Maximum Control Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=2-6 \mathrm{~V} \end{aligned}$			± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$\overline{I Z}$	Maximum Switch "OFF" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}}(\text { Figure } 3) \end{aligned}$	$\begin{gathered} \hline 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{gathered} \pm 60 \\ \pm 80 \\ \pm 100 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 800 \\ \pm 1000 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 800 \\ \pm 1000 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$I I_{Z}$	Maximum Switch "ON" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{OS}}=\text { OPEN (Figure 2) } \end{aligned}$	$\begin{gathered} \hline 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 50 \\ & \pm 60 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 200 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 200 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$I_{C C}$	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 2.0 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$	$\begin{gathered} 40 \\ 80 \\ 160 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistance (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{II} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5 V values should be used

Note 5: At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$) approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics

AC Test Circuits and Switching Time Waveforms

FIGURE 1. "ON" Resistance

FIGURE 2. "ON" Channel Leakage Current

FIGURE 3. "OFF" Channel Leakage Current

FIGURE 4. $\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$ Propagation Delay Time Signal Input to Signal Output

FIGURE 5. $\mathrm{t}_{\text {PZL }}$, $\mathrm{t}_{\text {PLZ }}$ Propagation Delay Time Control to Signal Output

FIGURE 6. $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$ Propagation Delay Time Control to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

$v_{1 S(1)}$

FIGURE 9. Crosstalk Between Any Two Switches

FIGURE 10. Switch OFF Signal Feedthrough Isolation

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into
the analog switch input pins, the voltage drop across the switch must not exceed 0.6 V (calculated from the ON resistance)

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTC14RevC3
DETAIL A

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
